

GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL PHYSICS - COMPONENT 1 A420U10-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

A LEVEL COMPONENT 1 – NEWTONIAN PHYSICS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink

One tick must equate to one mark (except for the extended response question).

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

SECTION A

	0	ation	Marking dataila			Marks	available		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1	(a)	(i)	Constant horizontal velocity if/because no horizontal <u>force</u> [1] That is if air resistance ignored or air resistance would/will make horizontal velocity decrease [1]	2			2		
		(ii)	From horiz motion, e.g. $t = \frac{6.0}{9.0} = 0.667 [s] [1]$ So from vertical motion, $y = \frac{1}{2}9.81 \times \left(\frac{6.0}{9.0}\right)^2 = 2.18 [m] \text{ ecf}$ on $t [1]$ Conclusion consistent [1] Alternative: From vertical motion, e.g. $t = \sqrt{\frac{2 \times 2.2}{9.81}} = 0.67[0] [s] \text{ ecf}$ on $t [1]$ From horiz motion, $v_h = \frac{6.0}{0.67} = 8.96 [m \text{ s}^{-1}] \text{ ecf on } t$ or $x = 9.0 \times 0.67 = 6.03 [m] [1]$ Conclusion consistent [1] Alternative: Time from horiz motion = 0.67 [s] [1] Time from vertical motion = 0.67 [s] [1]			3	3	2	

Question	Marking dataila	Marks available							
Question	Marking details	A01	AO2	AO3	Total	Maths	Prac		
(b)	Vertical velocity component, $v_v = 6.5 \text{ [m s}^{-1}\text{] or } 6.6 \text{ [m s}^{-1}\text{] [1]}$ Diagram showing v_v , v_h and v_{res} or by implication if correct answer [1] Angle to horiz = 36° or angle to vertical = 54° [1] ecf on v_v Magnitude of velocity = 11 [m s ⁻¹] [1] ecf on v_v		4		4	3			
	Question 1 total	2	4	3	9	5	0		

	Ques	otion	Marking dataila			Marks	available		
	Ques	SUON	Marking details	A01	AO2	AO3	Total	Maths	Prac
2	(a)		Zero distance from Sun to line of action of force accept zero perpendicular distance or [line of action of] force is straight through [centre of] Sun		1		1		
	(b)		Work = $2.15 \times 10^{16} \times 2.0 \times 10^{12} \times \cos 64^{\circ}$ [1] = 1.88×10^{28} J unit mark [1]	1	1		2	2	
	(c)		Work = ΔE_k declared as strategy or implied by conclusion ecf from (b) provided comment made [1] Intermediate step: $E_{kA} = 9.94 \times 10^{28}$ [J] or $E_{kB} = 1.18 \times 10^{29}$ [J] or $v_B^2 - v_A^2 = 2.24 \times 10^6$ [m ² s ⁻²] or correct substitution into $\frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2$ [1] $E_{kB} - E_{kA} = 1.86 \times 10^{28}$ [J] clearly arrived at [1]			3	3	2	
	<u> </u>		Question 2 total	1	2	3	6	4	0

	0	otion	Marking dataila			Ма	arks avail	able	
	Que	estion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
3	(a)		Vector sum of momenta [or total momentum] of [a number of] bodies is constant [1] provided no forces act from outside [that number] [1]	2			2		
	(b)	(i)	$\Delta p_{\rm X} = [-] 5.5 [\rm Ns] \text{ or equiv or by imp [1]}$ $\Delta p_{\rm Y} = [+] 5.5 [\rm Ns] \text{ or equiv or by imp [1] ecf}$ Y's velocity after collision = [+] 2.3 [m s ⁻¹] [1] ecf on 5.5 [\rm Ns]		3		3	2	
		(ii)	Up to about 120 ms, straight line along time axis [1] After 120 ms upward sloping line followed by horizontal line after 160 ms [1] Horizontal line after 160 ms at 5.5 [N s] [1] $momentum / Ns = \frac{1}{100} + \frac{1}{100} + \frac{1}{200} + \frac{1}{300} + \frac{1}{100} + $		3		3	2	
		(iii)	Change of momentum in a Δt of 40 ms [Accept any Δt between 30 ms and 40 ms] [1] Mean force on X = (-)140 N; ecf on (-)5.5 Ns and 40 ms [1]		2		2	2	
			Question 3 total	2	8	0	10	6	0

	0	stion		Marking dataila			Ма	irks avail	able	
	Que	SUON		Marking details	AO1	AO2	AO3	Total	Maths	Prac
4	(a)	(i)	I	Use of $\omega = 2\pi f$ even if <i>f</i> is still in revs per minute or by impl [1] $\omega = 0.859$ [rad s ⁻¹] [1]	1	1		2	1	
			II	Use of $v = r\omega$ [= 3.26 m s ⁻¹] or equiv or by impl. [1] Time = 3.06 [s] [1] ecf	1	1		2	1	
			111	Use of $a = \frac{v^2}{r}$ or $a = r\omega^2$ or by implication [1] $a = 2.80 \text{ [m s}^{-2}\text{]}$ [1] ecf	1	1		2	1	
		(ii)	Ι	Correct substitutions in $mg = T \cos \theta$ (or after transposition) or by implication [1] 2.76 [N] [1] [2.55 N indicates error of principle]		2		2	1	
			11	$T \sin 16^\circ$ evaluated [0.761 N ecf on T] or used in calculation [1] Conclusion clearly based on calculation e.g. Either $\frac{2.76 \sin 16^\circ}{0.270}$ = 2.82 [m s ⁻²] or 2.80 ecf from (a)(i)III × 0.270 kg = 0.756 [N] and agreement						
	(b)			noted ecf [1] Example defined e.g. bends in roads or rail lines, spin-drier [1]			3	3	2	
				One factor affecting centripetal acceleration considered in context e.g. bends in roads or tracks must not be too sharp, or spin speed must be high enough [1] Another factor considered e.g. vehicle speed warnings, drum size limited or more intricate measures e.g. banking of tracks [1]			3	3		
				Question 4 total	3	5	6	14	6	0

	0	stion	Marking dataila			Marks	available		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
5	(a)		[Motion such that] acceleration proportional to displacement from a fixed point [1] but in opposite direction or directed towards that point [1] or $a = -\omega^2 x$ with a = acceleration and x = displacement [1] ω [or ω^2] constant [1]	2			2		
	(b)	(i)	T = 1.2[0] s (from graph) or by implication [1] Correct re-arrangement $k = \frac{4\pi^2 m}{T^2}$ at any stage or by impl. [1] $k = 4.80 \text{ Nm}^{-1}$ unit mark [1]		3		3	2	
		(ii)	Correct use of $v_{\text{max}} = A\omega$ [= 0.209 m s ⁻¹] or by implic [1] Correct use of $E_{\text{k}} = \frac{1}{2}mv^2$ ecf on slips in v_{max} [1] $E_{\text{k max}} = 3.8 \times 10^{-3}$ J [1]	1 1	1		3	2	
		(iii)	kinetic energy 0 0 0 1 1 1 1 1 2 0 1 1 2 0 1 1 1 2 0 1 1 1 1 1 1 1 1 1 1	1	1		3	2	

Question	Marking dataila			Marks	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(C)	Reasonable straight line of best fit drawn [1] Straight line expected as equation equivalent to $\ln A = \ln A_0 - \lambda t$ [1] Some comment about scatter of points – either supporting or casting doubt on straight line [1] $\lambda = -\text{gradient}$ or by impl. [1] Gradient calculated correctly e.g. 0.014 [s ⁻¹] No second penalty for mishandling minus sign [1]			5	5	3	5
	Question 5 total	6	5	5	16	9	5

	0	otion		Marking dataila			Marks	available		
	Que	stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
6	(a)	(i)		ρ correctly calculated ignoring sig figs, units, factors of 10 ^{<i>n</i>} [1] ρ = 8.9 × 10 ³ [kg m ⁻³] Accept ρ = 8.87 × 10 ³ [kg m ⁻³][1] Percentage (or fractional) unc =0.07[2] (or 7[.2]%)] or by implic [1]	1	1				
				ρ = (8.9 ± 0.6 [or 0.7]) × 10 ³ [kg m ⁻³] accept ρ = (8.87 ± 0.64) × 10 ³ [kg m ⁻³] [1]		1		4	2	4
		(ii)		Division of density by atomic mass even if error in units [1] 8.4×10^{28} [m ⁻³] ecf on ρ , no sig fig penalty [1]		2		2	1	2
	(b)	(i)	Ι	Correct transpos'n at any stage of $pV=nRT$ or $pV = NkT$ [1] Correct insertion of data, including $T = 288$ K in $pV = NkT$ or in $pV = nRT$ giving $n = 42[.2]$ [mol] or by implic from N [1] $N = 2.5[4] \times 10^{25}$ [m ⁻³] [1]		3		3	2	
			II	Gas mainly empty space (between molecules) [but atoms packed/bonded together in solid] [1] Gas molecules are moving about at high speeds [so could be said to take up more space than vibrating atoms in solid] or molecules themselves are of comparable size [1]	1		1	2		
		(ii)	Ι	Correct use of $\frac{1}{2}mc_{\rm rms}^2 = \frac{3}{2}kT$ or equivalent [1] Convincing algebra [1]	1	1		2		
			II	$\frac{c_{\rm rms} \text{ for nitrogen}}{c_{\rm rms} \text{ for oxygen}} = 1.07 \text{ or equiv or by implic [1]}$ 7 % [1]			2	2	1	
	•			Question 6 total	3	9	3	15	6	6

	0	ation	Maybing dataila			Marks	available		
	Que	stion	Marking details	A01	AO2	AO3	Total	Maths	Prac
7	(a)		Energy [entering system] [1]						
			by virtue of a temperature difference [or equivalent] [1]	2			2		
	(b)	(i)	Correct substitutions (ignoring power of 10) into $W = p\Delta V$ [1] $W = 1.20$ k[J] [1]	1	1		2		
		(ii)	Indicative content: AB Gas does work [or <i>W</i> positive] and internal energy rises [or ΔU positive] since temp rises [as gas expands at constant pressure]. So heat flows in [or <i>Q</i> positive] BC Gas has work done on it [or <i>W</i> negative]. No change in internal energy [or $\Delta U = 0$] so heat out [or <i>Q</i> negative] CA No work [or <i>W</i> = 0] but internal energy falls [or ΔU negative] so heat out [or <i>Q</i> negative] ABCA Net work done on gas [or <i>W</i> negative], no change in internal energy [or $\Delta U = 0$] so heat out [or <i>Q</i> negative] 5-6 marks They have considered <i>Q</i> , <i>W</i> and ΔU well for all stages. <i>There is a sustained line of reasoning which is coherent,</i> <i>relevant, substantiated and logically structured.</i> 3-4 marks They have considered 2 of <i>Q</i> , <i>W</i> and ΔU well for all stages. Or they have attempted to consider <i>Q</i> , <i>W</i> and ΔU for most stages. <i>There is a line of reasoning which is partially coherent, largely</i> <i>relevant, supported by some evidence and with some structure.</i>	6			6		

Question	Marking dataila			Marks	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	1-2 marks They have considered Q , W and ΔU well for all stages. Or they have attempted to consider 2 of Q , W and ΔU for most stages. There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. 0 marks No attempt made or no response worthy of credit.						
	Question 7 total	9	1	0	10	0	0

SECTION B

	Question	Marking dataila			Marks	available		
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
8	(a)	Nebula, protostar, mid star, red giant, planetary nebula, white dwarf, black dwarf		1		1		
	(b)	Radiation/light not absorbed by atmosphere			1	1		
	(C)	Any one of these 4 marked [with a cross]. If more than one marked then follow the rule 1 right + 1 wrong = zero $\sqrt{6000}$		1		1		
	(d)	Photons collide with matter in star (or equivalent) [1] Force is rate of change of momentum [1] Light has momentum (or $p = \frac{h}{\lambda}$) [1]	1	1		3		
	(e)	More massive linked to greater gravitational force [hence density greater] [1] Greater density linked to increased [rate of] fusion [1] Reference to energy released <u>by fusion</u> e.g. more energy released [1]		3		3		

0	uestio		Marking dataila			Marks availableAO2AO3Total122122222444111			
Q	uestio	n	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(f)) (i)	$\lambda = \frac{0.0029}{T} \text{ used [1]}$ Answer = 145 n[m] or $\frac{0.0029}{20000}$ seen (accept 17000 K to 22000 K from the graph) [1]	1	1				
	(ii)	Better to use UV or more radiation in UV or peak emission is not in visible range [1] [But] hot stars also emit visible light [more than colder stars] [1]			2		1	
(g)		Choice of equation 1 e.g. $0.23 \times 0.2^{2.3}$ (=0.0057) [1] In (approximately) correct place (don't allow as a guess) [1]			2	2	2	
(h)		Correct use of equation 3 e.g. $1.5 \times 10^{3.5}$ or 4743 [1] Stated that luminosity or power or rate of use of fuel is 5000× or 4743× greater [1] Relevance of factor of 10 understood [1] Factor of 10 M_{\odot} and 5000 L_{\odot} combined for a conclusion [1] e.g. $\frac{10}{5000}$ seen or $\frac{10}{4743}$ or worded answer e.g. although burning 5000× faster, it has 10× more fuel so 500× less lifetime		4		4	2	
(i)			As mass increases radius decreases or vice versa	1			1		
	1		Question 8 total	4	11	5	20	5	0

A LEVEL COMPONENT 1: NEWTONIAN PHYSICS

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	2	4	3	9	5	0
2	1	2	3	6	4	0
3	2	8	0	10	6	0
4	3	5	6	14	6	0
5	6	5	5	16	9	5
6	3	9	3	15	6	6
7	9	1	0	10	0	0
8	4	11	5	20	5	0
TOTAL	30	45	25	100	41	11

A420U10-1 EDUQAS GCE A Level Physics - Comp 1 MS S19/DM